Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lung Cancer ; 182: 107292, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423059

RESUMO

OBJECTIVES: Non-small cell lung cancer (NSCLC) with brain metastases (BM) is a challenging clinical issue with poor prognosis. No data exist regarding extensive genetic analysis of cerebrospinal fluid (CSF) and its correlation to associated tumor compartments. MATERIALS AND METHODS: We designed a study across multiple NSCLC patients with matched material from four compartments; primary tumor, BM, plasma and CSF. We performed enrichment-based targeted next-generation sequencing analysis of ctDNA and exosomal RNA in CSF and plasma and compared the outcome with the solid tumor compartments. RESULTS: An average of 105 million reads per sample was generated with fractions of mapped reads exceeding 99% in all samples and with a mean coverage above 10,000x. We observed a high degree of overlap in variants between primary lung tumor and BM. Variants specific for the BM/CSF compartment included in-frame deletions in AR, FGF10 and TSC1 and missense mutations in HNF1a, CD79B, BCL2, MYC, TSC2, TET2, NRG1, MSH3, NOTCH3, VHL and EGFR. CONCLUSION: Our approach of combining ctDNA and exosomal RNA analyses in CSF presents a potential surrogate for BM biopsy. The specific variants that were only observed in the CNS compartments could serve as targets for individually tailored therapies in NSCLC patients with BM.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Mutação/genética , Biópsia Líquida , Neoplasias Encefálicas/genética
2.
Oncotarget ; 10(30): 2911-2920, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31080561

RESUMO

Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer and its molecular landscape has been extensively studied. The most common genetic alterations in NSCLC are mutations within the epidermal growth factor receptor (EGFR) gene, with frequencies between 10-40%. There are several molecular targeted therapies for patients harboring these mutations. Liquid biopsies constitute a flexible approach to monitor these mutations in real time as opposed to tissue biopsies that represent a single snap-shot in time. However, interrogating cell free DNA (cfDNA) has inherent biological limitations, especially at early or localized disease stages, where there is not enough tumor material released into the patient's circulation. We developed a qPCR- based test (ExoDx EGFR) that interrogates mutations within EGFR using Exosomal RNA/DNA and cfDNA (ExoNA) derived from plasma in a cohort of 110 NSCLC patients. The performance of the assay yielded an overall sensitivity of 90% for L858R, 83% for T790M and 73% for exon 19 indels with specificities of 100%, 100%, and 96% respectively. In a subcohort of patients with extrathoracic disease (M1b and MX) the sensitivities were 92% (L858R), 95% (T790M), and 86% (exon 19 indels) with specificity of 100%, 100% and 94% respectively.

3.
Clin Cancer Res ; 24(12): 2944-2950, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29535126

RESUMO

Purpose: About 60% of non-small cell lung cancer (NSCLC) patients develop resistance to targeted epidermal growth factor receptor (EGFR) inhibitor therapy through the EGFR T790M mutation. Patients with this mutation respond well to third-generation tyrosine kinase inhibitors, but obtaining a tissue biopsy to confirm the mutation poses risks and is often not feasible. Liquid biopsies using circulating free tumor DNA (cfDNA) have emerged as a noninvasive option to detect the mutation; however, sensitivity is low as many patients have too few detectable copies in circulation. Here, we have developed and validated a novel test that overcomes the limited abundance of the mutation by simultaneously capturing and interrogating exosomal RNA/DNA and cfDNA (exoNA) in a single step followed by a sensitive allele-specific qPCR.Experimental Design: ExoNA was extracted from the plasma of NSCLC patients with biopsy-confirmed T790M-positive (N = 102) and T790M-negative (N = 108) samples. The T790M mutation status was determined using an analytically validated allele-specific qPCR assay in a Clinical Laboratory Improvement Amendment laboratory.Results: Detection of the T790M mutation on exoNA achieved 92% sensitivity and 89% specificity using tumor biopsy results as gold standard. We also obtained high sensitivity (88%) in patients with intrathoracic disease (M0/M1a), for whom detection by liquid biopsy has been particularly challenging.Conclusions: The combination of exoRNA/DNA and cfDNA for T790M detection has higher sensitivity and specificity compared with historical cohorts using cfDNA alone. This could further help avoid unnecessary tumor biopsies for T790M mutation testing. Clin Cancer Res; 24(12); 2944-50. ©2018 AACR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Exossomos/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Alelos , Biomarcadores Tumorais , Biópsia , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante , Receptores ErbB/sangue , Receptores ErbB/genética , Éxons , Humanos , Neoplasias Pulmonares/patologia , Estadiamento de Neoplasias , Curva ROC , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...